A Developmental Switch of Gene Expression in the Barley Seed Mediated by HvVP1 (Viviparous-1) and HvGAMYB Interactions.
نویسندگان
چکیده
The accumulation of storage compounds in the starchy endosperm of developing cereal seeds is highly regulated at the transcriptional level. These compounds, mainly starch and proteins, are hydrolyzed upon germination to allow seedling growth. The transcription factor HvGAMYB is a master activator both in the maturation phase of seed development and upon germination, acting in combination with other transcription factors. However, the precise mechanism controlling the switch from maturation to germination programs remains unclear. We report here the identification and molecular characterization of Hordeum vulgare VIVIPAROUS1 (HvVP1), orthologous to ABA-INSENSITIVE3 from Arabidopsis thaliana HvVP1 transcripts accumulate in the endosperm and the embryo of developing seeds at early stages and in the embryo and aleurone of germinating seeds up to 24 h of imbibition. In transient expression assays, HvVP1 controls the activation of Hor2 and Amy6.4 promoters exerted by HvGAMYB. HvVP1 interacts with HvGAMYB in Saccharomyces cerevisiae and in the plant nuclei, hindering its interaction with other transcription factors involved in seed gene expression programs, like BPBF. Similarly, this interaction leads to a decrease in the DNA binding of HvGAMYB and the Barley Prolamine-Box binding Factor (BPBF) to their target sequences. Our results indicate that the HvVP1 expression pattern controls the full Hor2 expression activated by GAMYB and BPBF in the developing endosperm and the Amy6.4 activation in postgerminative reserve mobilization mediated by GAMYB. All these data demonstrate the participation of HvVP1 in antagonistic gene expression programs and support its central role as a gene expression switch during seed maturation and germination.
منابع مشابه
Interactions of two transcriptional repressors and two transcriptional activators in modulating gibberellin signaling in aleurone cells.
Gibberellins (GAs) regulate many aspects of plant development, such as germination, growth, and flowering. The barley (Hordeum vulgare) Amy32b alpha-amylase promoter contains at least five cis-acting elements that govern its GA-induced expression. Our previous studies indicate that a barley WRKY gene, HvWRKY38, and its rice (Oryza sativa) ortholog, OsWRKY71, block GA-induced expression of Amy32...
متن کاملThe transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells.
The abscisic acid (ABA) response promoter complexes (ABRCs) of the HVA1 and HVA22 genes have been shown to confer ABA-induced gene expression in cereals. A barley basic domain/Leu zipper (bZIP) transcription factor, HvABI5, is able to recognize ABRCs in vitro in a sequence-specific manner and to transactivate ABRC-beta-glucuronidase reporter genes when introduced to barley aleurone cells via pa...
متن کاملABI5 interacts with abscisic acid signaling effectors in rice protoplasts.
Abscisic acid (ABA) regulates seed maturation, germination, and adaptation of vegetative tissues to environmental stresses. The mechanisms of ABA action and the specificity conferred by signaling components in overlapping pathways are not completely understood. The ABI5 gene (ABA insensitive 5) of Arabidopsis encodes a basic leucine zipper factor required for ABA response in the seed and vegeta...
متن کاملADAM Gene Expression in The Adult CNS and Genetic Aberrations in Cancer Cells
ADAM metalloprotease-disintegrins share a common modular structure of functional domains for proteolytic, cell adhesion, and signaling interactions. The metalloprotease domain of oughly half of the known ADAMs contain an intact consensus metzincin catalytic site, and they are thus thought to function as active metalloproteases. The types of interactions mediated by ADAMs are expressly conspicu...
متن کاملSelectable Marker Gene Removal and Expression of Transgene by Inducible Promoter Containing FFDD Cis-Acting elements in Transgenic plants
Abstract Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production without using SMG is not economically feasible. However, SMGs are non-essential once an intact transgenic plant has been established. Eli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 170 4 شماره
صفحات -
تاریخ انتشار 2016